

PR No. 1000030053

Rfx No. 6100001282

Technical Specifications of Atomic Force Microscopy

1. AFM System

- i. Scanner, camera, micrometer stage, active ant vibration table and air flow protection integrated ina single device.
- ii. Easy accommodation of the largest variety of different samples and sample holders up to 100mm in diameter and 10 mm in height.
- iii. Integrated manual sample positioning with 20 mm x 20 mm travel in XYThe AFM must have a xyz tip-scanning configuration.
- iv. The AFM must include both top and side view optics for sample viewing. Should have the option to rescan the disturbed line in image during live imaging.
- v. Should be capable of accommodating self-aligned cantilevers with alignment grooves to guarantee that laser is also automatically self-aligned on the cantilever back; manual laser adjustment must bepossible for grooveless and special cantilevers.
- vi. Integrated active antivibration table (min. 25 dB (94.0%) at 5 Hz, 40 dB (99.0%) above 10 Hz) withdetection of non-adjustable external vibrations and consequent automatic remeasurement of the current scan line
- vii. Microsoft Windows compatible and freely available acquisition and analysis software with softwareupdates included for the product lifetime.
- viii. Capability of integrating a single objective digital inverted microscope for combined optical experiments, with fluorescence option for optional upgrade.

2. Mode of Operation

The system must include the following scanningmodes:

- i. AFM Contact Mode
- ii. AFM Tapping Mode
- iii. Lateral Force Microscopy
- iv. Phase Imaging
- v. Force Modulation Microscopy
- vi. Force Distance (F-D) Spectroscopy
- vii. Lithography
- viii. Liquid imaging

3. Scanner

- i. Flexure-based XY scanner and decoupled piezo-based Z-scanner. Piezo tube scanners are notacceptable.
- ii. Must have possibility to have an ample choice of detachablecantilever holders with kinematic mount to accommodate standard commercially available cantilevers with alignment grooves.
- iii. AFM laser operating at a wavelength between 645 and 655 nm The scanner must have a XY axesscanning range ≥ 100 um, and Z axes scanning range $\geq 12 \ \mu m$ Z-measurement noise level $\leq 40 \ pm$ (RMS, dynamic mode in air)
- iv. Optical Z position sensor with a noise level ≤ 180 pm.

4. System Optics

- i. AFM scanning cantilever/probe optical surface should be viewable on axis in real time via DirectOptical Video Access by CCD.
- ii. The resolution of the optics must be $2 \mu m$ or better.
- iii. The AFM must include top-view optics with motorized focus & digital zoom. Systems having both top view and side view camera with motorized focus and digital zoom will be preferred.
- iv. The optics must have software-controlled white LED illumination.
- v. The optics must include a 5-Megapixel or higher camera, and software to display and store the optical image from within the AFM software.

5. System Controller

- i. All digital signal processing for maximum freedom of operations. Very sensitive 24 Bit ADC/DAC for Zoom-In and precise acquisition.16 bit controllers are strictly no acceptable.
- ii. Highest quality of analog signal handling for minimum electronic noise.32Bit CPU and multitasking operating system for parallel operations.
- iii. X/Y/Z-Axis Scan & Position Controller 3 x 24Bit DAC, 200kHz.X/Y/Z-Axis Position Measurement 3 x 24Bit ADC, 200kHz Excitation & Modulation Outputs 4 x 16Bit DAC, 20MHz Analog signal input bandwidth DC to 5MHz Main Input Signal capturing 2 x 16Bit ADC, 20MHz,2 x 24Bit ADC, 200kHz
- iv. Additional User Signal Outputs 3 x 24Bit DAC, 200kHz
- v. Additional User Signal Inputs 3 x 24Bit ADC, 200kHz
- vi. Additional Monitor Signal Outputs 2 x 24Bit ADC, 200kHz
- vii. Digital Synchronization 2 x Digital Out, 2 x Digital In, 2 x I2C Bus.
- viii. FPGA Module & Embedded Processor ALTERA FPGA, 32Bit NIOS-CPU, 80MHz256MB RAM, Multitasking OS Communication USB 2.0 Hi-Speed to PC System synchronization 10MHz internal quarts or external clockPower 90-240 V AC, 70W, 50/60H

6. Detector

i. High-speed, low-noise 4-quadrant photodiode detector; Choice between red laser and near infraredSLD; Laser on/off through software.

7. Computer/UPS

- i. Latest branded PC with windows 10 operating system, 500GB hard drive, 8GB RAM, DVD writer, mouse, keyboard, 24 inch Monitor and licensed software for the operation of the instrument.
- ii. Software must be a single package for all modes and attachments with no need for additionalsoftware programs.
- iii. Software package must include both image acquisition and data processing software in one package with no need for different programs operation.
- iv. $\frac{1}{2}$ hour back up online UPS must be provided.

8. Image Analysis Software

- i. Image Display: Dual Imaging Window for Scan and Retrace image. Sample Navigator: Assistant for localized zooming w.r.t. a large area scan.
- ii. Analysis Functions: Line (Single line profile) Extraction, Localized Zooming, Roughness Display, Measure length & angles on the Measure length & angles on the images, 2D Fast Fourier, Transformation etc.
- iii. Image Processing Tool: Spatial and Fourier Low- Pass Filtering, Background Subtraction, HistogramEqualization, Zooming, Contrast, Slope Correction etc.

9. Others

i. Please specify details of any other options which is not specified here but are part of the systemwithout any additional cost.

10. Power Supply

i. The system should be compatible with the Indian power supply e.g., 90–240 V AC, 70 W, 50/60Hz.

11. Installation and Training

- i. The system must be installed, and demonstrated by factory trained engineers on our site free ofcharge.
- ii. Comprehensive on-site training required to our satisfaction.

12. Warranty and Support

i. One year comprehensive warranty must be included along with the bid/offer separately. Warranty should start from date of installation.

13. Future upgradation capabilities

- i. The system must be capable of further upgradation as shown below with additional costs Electrical force microscopy Magnetic Force Microscopy (MFM).
- ii. Variable Magnetic Field Application: System must be capable of supporting an accessory that allows application for Variable in-plane and out-of-plane magnetic fields, with field strength controlled from within the software.
- iii. The in-plane magnetic field should range from at least +/-7,000G and the out-of- plane field strength should range from at least +/- 1200 Gauss.
- iv. The accessory maybe purchased in future as upgradation. However, the vendors must state/certify that the AFM system provided will be compatible with these attachments in case these are purchased separately now or in the future.
- v. High Voltage Module for PFM studies with range up to +/- 100 V or higher. System must include anaccessory that enables application of a variable high voltage (+/- 100 V) bias

between the tip and sample.

- vi. Voltage must be software controlled and capable of high frequency (>100kHz) operation.
- vii. Accessory must include features and training to help ensure safe operation.Dual frequency resonance tracking or equivalent for PFM Heterodyne Kelvin probe microscopy Contact resonance imaging Cooling/heating from -35 o C to 180 o C
- viii. Environmental control for gas purging and humidity control Cantilever based microfluidic system for injection, Traditional glass micropipettes are notacceptable.
- A. Must include the proper control system
- B. Pressure range -800 to 1000 mbar
- C. Pressure resolution 0.5mbar or better
- D. Transient response time 1s or better
- E. Must include at least 20 different probes and barcode reader to read tip type and parameters Should allow the recording of time-lapse mass measurements in physiological conditions, while simultaneously conducting fluorescence and/or differential interference contrast microscopy (DIC).